EE 435

Lecture 4

Fully Differential Single-Stage Amplifier Design

- General Differential Analysis
- 5T Op Amp from simple quarter circuit
- Biasing with CMFB circuit
- Common-mode and differential-mode analysis
- Overall Transfer Characteristics

Design of 5T Op Amp Slew Rate

Review from last lecture: Where we are at:

Basic Op Amp Design

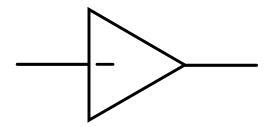
Fundamental Amplifier Design Issues

- Single-Stage Low Gain Op Amps
 - Single-Stage High Gain Op Amps
 - Two-Stage Op Amp
 - Other Basic Gain Enhancement Approaches

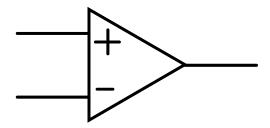
Review from last lecture: Where we are at:

Single-Stage Low-Gain Op Amps

Single-ended input



Differential Input



(Symbol does not distinguish between different amplifier types)

Differential Input Low Gain Op Amps

Will Next Show That:

 Differential input op amps can be readily obtained from single-ended op amps

 Performance characteristics of differential op amps can be directly determined from those of the single-ended counterparts

Counterpart Networks

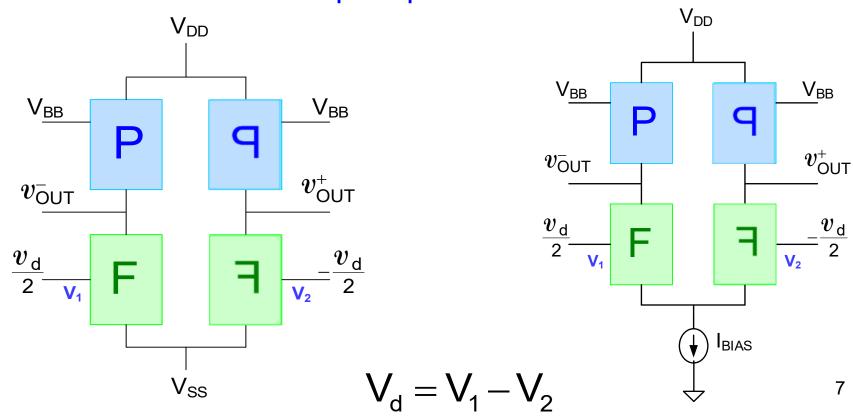
Definition: The counterpart network of a network is obtained by replacing all n-channel devices with p-channel devices, replacing all p-channel devices with n-channel devices, replacing V_{SS} biases with V_{DD} biases, and replacing all V_{DD} biases with V_{SS} biases.

Counterpart Networks

Theorem: The parametric expressions for all small-signal characteristics, such as voltage gain, output impedance, and transconductance of a network and its counterpart network are the same.

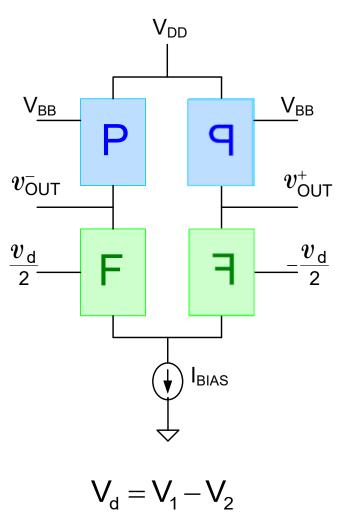
Synthesis of fully-differential op amps from symmetric networks and counterpart networks

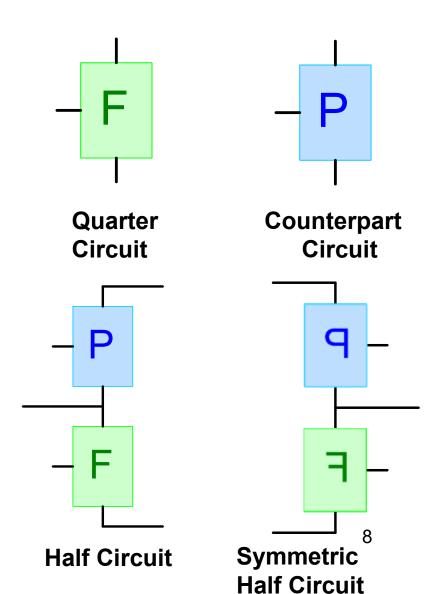
Theorem: If F is any network with a single input and P is its counterpart network, then the following circuits are fully differential circuits --- "op amps".



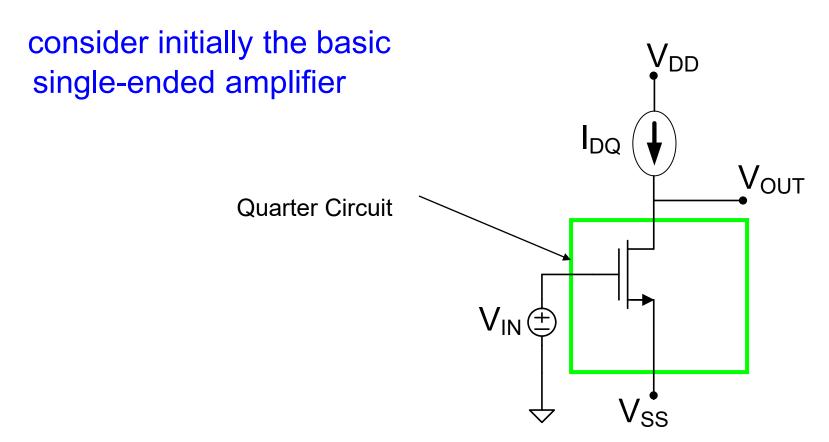
Synthesis of fully-differential op amps from symmetric networks and counterpart networks

Terminology

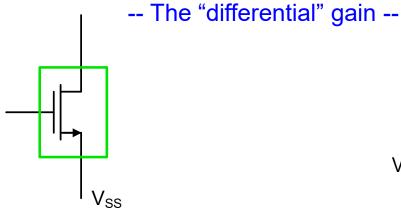




Applications of Quarter-Circuit Concept to Op Amp Design



Review from last lecture: Single-stage low-gain differential op amp



Quarter Circuit

Single-Ended Output: Differential Input Gain

$$A(s) = \frac{v_{OUT}}{v_{d}} = \frac{-\frac{g_{m1}}{2}}{sC_{L} + g_{o1} + g_{o3}}$$

$$A_{V0} = \frac{-g_{m1}}{2(g_{o1} + g_{o3})}$$

$$BW = \frac{g_{o1} + g_{o3}}{C_{i}}$$

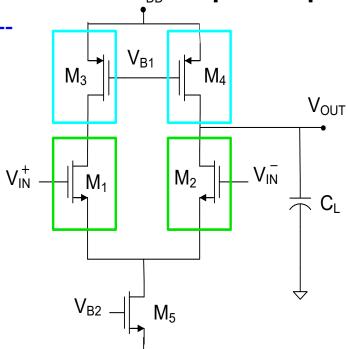
$$GB = \frac{g_{m1}}{2C}$$

Circuit is Very Sensitive to $V_{\rm B1}$ and $V_{\rm B2}$!!

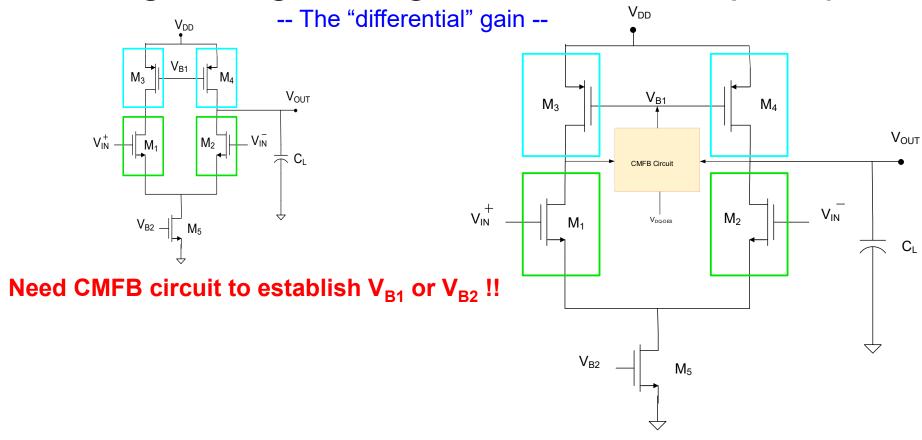
- Have synthesized fully differential op amp from quarter circuit!
- Have obtained analysis of fully differential op amp directly from quarter circuit!
- Still need to determine what happens if input is not differential!

10

Have almost obtained op amp characteristics by inspection from quarter circuit !!



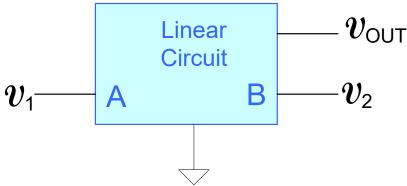
Single-stage low-gain differential op amp



- CMFB circuit determines average value of the drain voltages
- Compares the average to the desired quiescent drain voltages
- Established a feedback signal V_{B1} to set the right Q-point
- Shown for V_{B1} but could alternately be applied to V_{B2}

- Fully Differential Single-Stage Amplifier
 - General Differential Analysis
 - 5T Op Amp from simple quarter circuit
 - Biasing with CMFB circuit
- Common-mode and differential-mode analysis
 - Common Mode Gain
 - Overall Transfer Characteristics
- Design of 5T Op Amp
- Slew Rate

Consider <u>an</u> output voltage for any linear circuit with two inputs (i.e. need not be symmetric)



By superposition

$$v_{\mathsf{OUT}}$$
=A $_1v_1$ +A $_2v_2$

where A_1 and A_2 are the gains (transfer functions) from inputs 1 and 2 to the output respectively

Define the common-mode and difference-mode inputs by

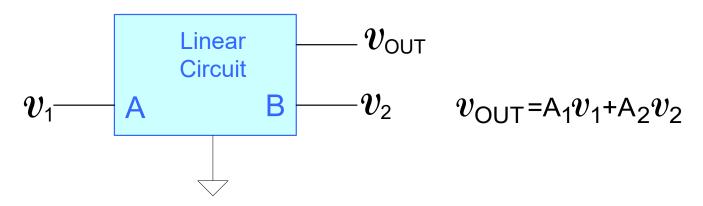
$$v_{c} = \frac{v_{1} + v_{2}}{2}$$
 $v_{d} = v_{1} - v_{2}$

These two equations can be solved for $v_{\scriptscriptstyle 1}$ and $v_{\scriptscriptstyle 2}$ to obtain

$$v_1$$
= v_c + $\frac{v_d}{2}$

$$v_2$$
= $v_{\rm c}$ - $\frac{v_{\rm d}}{2}$

Consider an output voltage for any linear circuit with two inputs



Substituting into the expression for $v_{\scriptscriptstyle \mathsf{OUT}}$, we obtain

$$v_{ ext{OUT}}$$
=A $_1$ $\left(v_{ ext{c}}+rac{v_{ ext{d}}}{2}
ight)$ +A $_2$ $\left(v_{ ext{c}}-rac{v_{ ext{d}}}{2}
ight)$

Rearranging terms we obtain

$$v_{\text{OUT}} = v_{\text{c}} (A_1 + A_2) + v_{\text{d}} \left(\frac{A_1 - A_2}{2}\right)$$

If we define A_c and A_d by

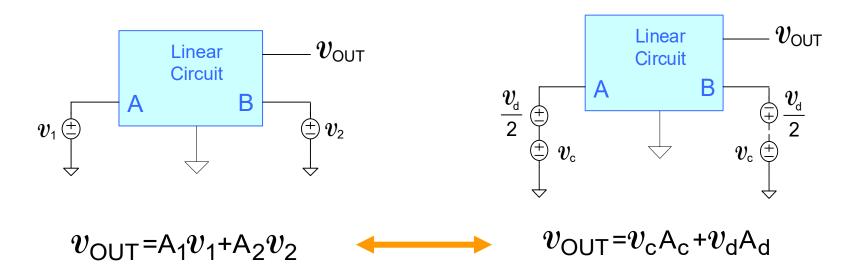
$$A_c = A_1 + A_2$$
 $A_d = \frac{A_1 - A_2}{2}$

Can express $v_{\scriptscriptstyle extsf{OUT}}$ as

$$v_{\mathsf{OUT}}$$
= $v_{\mathsf{c}}\mathsf{A}_{\mathsf{c}}$ + $v_{\mathsf{d}}\mathsf{A}_{\mathsf{d}}$

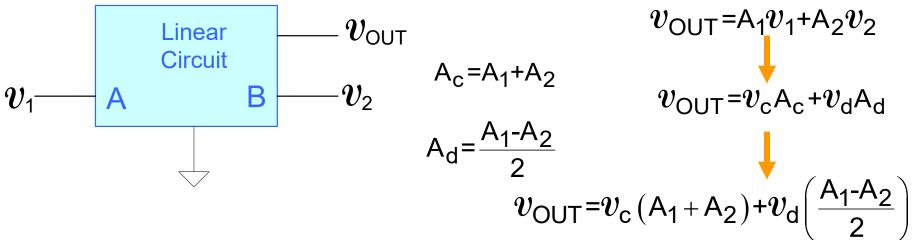
Depiction of singe-ended inputs and common/difference mode inputs

Alternate Equivalent Represntations



- Applicable to any linear circuit with two inputs and a single output
- Op amps often have symmetry and this symmetry further simplifies analysis

Consider any output voltage for any linear circuit with two inputs

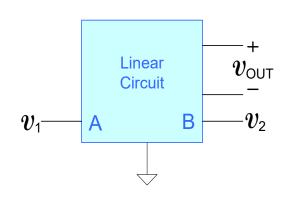


Implication: Can solve any linear two-input circuit by applying superposition with $v_{\rm 1}$ and $v_{\rm 2}$ as inputs or with $v_{\rm c}$ and $v_{\rm d}$ as inputs. This can be summarized in the following theorem:

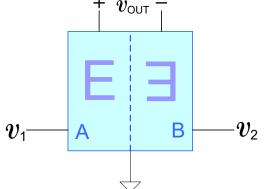
Theorem 1: The output for any linear network can be expressed equivalently as $v_{\rm OUT}$ =A₁ $v_{\rm 1}$ +A₂ $v_{\rm 2}$ or as $v_{\rm OUT}$ = $v_{\rm c}$ A_c+ $v_{\rm d}$ A_d Superposition can be applied to either $v_{\rm 1}$ and $v_{\rm 2}$ to obtain A₁ and A₂ or to $v_{\rm c}$ and $v_{\rm d}$ to obtain A_c and A_d

Observation: In a circuit with A_2 = - A_1 , A_C =0 we obtain $v_{\rm OUT}$ = $v_{\rm d}$ A_d

Extension to differential outputs and symmetric circuits $+v_{ ext{out}}$



Differential Output



Symmetric Circuit with Symmetric Differential Output

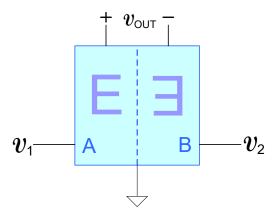
Observation: In a symmetric circuit with a symmetric differential output, $A_{\rm C}$ =0 so can be shown that $v_{\rm OUT}$ = $v_{\rm d}$ A_d This is summarized in the theorem:

Theorem 2: The symmetric differential output voltage for any symmetric linear network excited at symmetric nodes can be expressed as

$$v_{\mathsf{OUT}}$$
=A $_{\mathsf{d}}v_{\mathsf{d}}$

where A_d is the differential voltage gain and the voltage v_d = v_1 - v_2

Symmetric Circuit with Symmetric Differential Output



Theorem 2: The symmetric differential output voltage for any symmetric linear network excited at symmetric nodes can be expressed as

$$v_{\mathsf{OUT}}$$
=A $_{\mathsf{d}}v_{\mathsf{d}}$

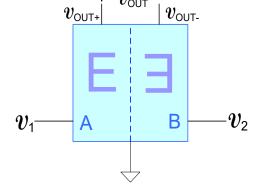
where A_d is the differential voltage gain and the voltage v_d = v_1 - v_2

Proof of Theorem 2 for Symmetric Circuit with Symmetric Differential Output:

By superposition, the single-ended outputs can be expressed as

$$v_{\mathsf{OUT}}$$
+ = $\mathsf{T}_{\mathsf{OPA}}v_{\mathsf{1}}$ + $\mathsf{T}_{\mathsf{OPB}}v_{\mathsf{2}}$

$$v_{\mathsf{OUT}}$$
- = $\mathsf{T}_{\mathsf{ONA}}v_{\mathsf{1}}$ + $\mathsf{T}_{\mathsf{ONB}}v_{\mathsf{2}}$



where T_{0PA} , T_{0PB} , T_{0NA} and T_{0NB} are the transfer functions from the A and B inputs to the single-ended + and - outputs

taking the difference of these two equations we obtain

$$v_{\mathsf{OUT}}$$
 = $v_{\mathsf{OUT+}}$ - $v_{\mathsf{OUT-}}$ = $(\mathsf{T}_{\mathsf{OPA}}\mathsf{-}\mathsf{T}_{\mathsf{ONA}})v_{\mathsf{1}} + (\mathsf{T}_{\mathsf{OPB}}\mathsf{-}\mathsf{T}_{\mathsf{ONB}})v_{\mathsf{2}}$

by symmetry, we have

$$T_{OPA} = T_{ONB}$$
 and $T_{ONA} = T_{OPB}$

thus can express V_{OUT} as

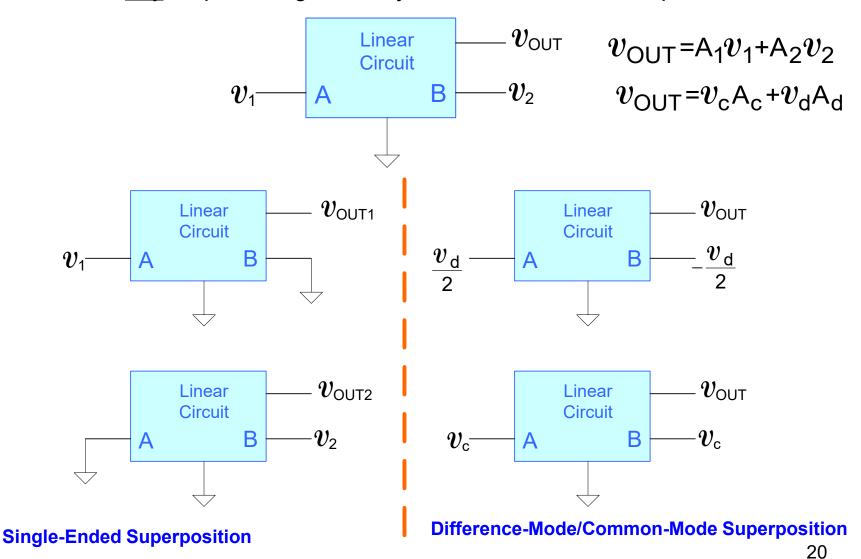
$$v_{\text{OUT}} = (T_{\text{OPA}} - T_{\text{ONA}})(v_1 - v_2)$$

or as

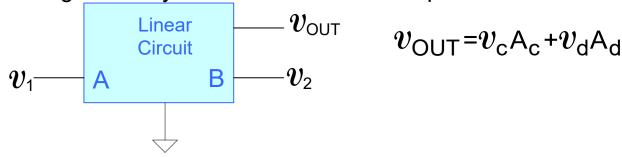
$$v_{\mathsf{OUT}}$$
=A $_{\mathsf{d}}v_{\mathsf{d}}$

where
$$A_d$$
 = T_{OPA} - T_{ONA} and where v_d = v_1 - v_2

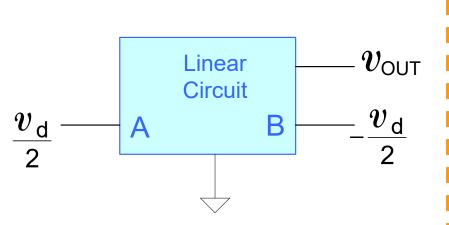
Consider any output voltage for any linear circuit with two inputs



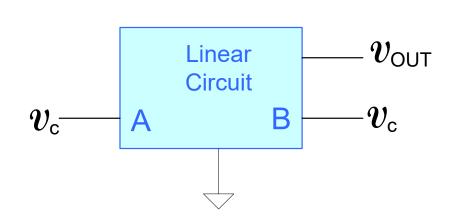
Consider an output voltage for any linear circuit with two inputs



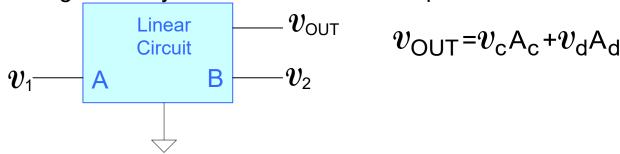
- Difference-Mode/Common-Mode Superposition is almost exclusively used for characterizing Amplifiers that are designed to have a large differential gain and a small common-mode gain
- Analysis to this point has been focused only on the circuit on the left



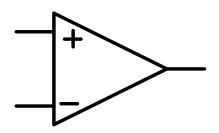
Note: Previous analysis was correct, just did not address whether the circuit had any common mode gain.



Consider an output voltage for any linear circuit with two inputs



Does Conventional Wisdom Address the Common Mode Gain Issue?



Does Conventional Wisdom Address the Common Mode Gain Issue?

CHAPTER 2 OPERATIONAL AMPLIFIERS Inverting input Output $i_1 = 0$ $A(v_2)$ (Power-supply $i_2 = 0$ common terminal)

FIGURE 2.3 Equivalent circuit of the ideal op amp.

Noninverting input

23

Does Conventional Wisdom Address the Common Mode Gain Issue?

66 CHAPTER 2 OPERATIONAL AMPLIFIERS

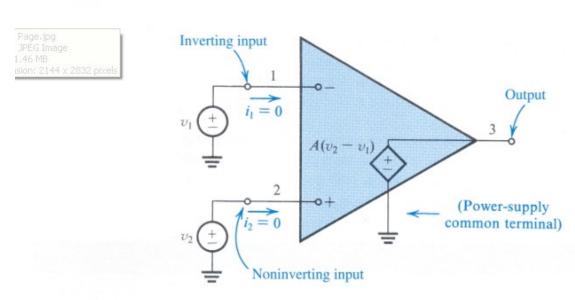


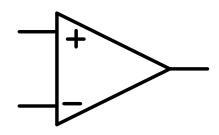
FIGURE 2.3 Equivalent circuit of the ideal op amp.

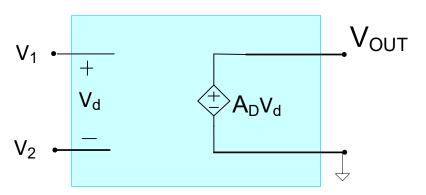
TABLE 2.1 Characteristics of the Ideal Op Amp

- 1. Infinite input impedance
- 2. Zero output impedance
- 3. Zero common-mode gain or, equivalently, infinite common-mode rejection
- 4. Infinite open-loop gain A
- 5. Infinite bandwidth

How is Common-Mode Gain Modeled?

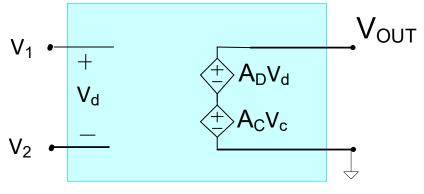
If Op Amp is a Voltage Amplifier with infinite input impedance, zero output impedance, and one terminal of the output is grounded





Ideal Differential Voltage Amplifier

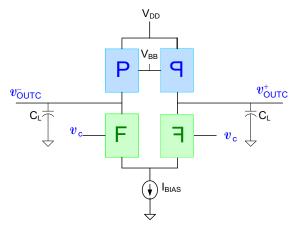
$$V_d = V_1 - V_2$$



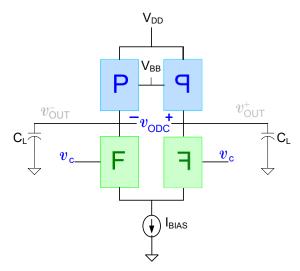
Ideal Voltage Amplifier

$$V_d = V_1 - V_2$$
 $V_c = \frac{V_1 + V_2}{2}$

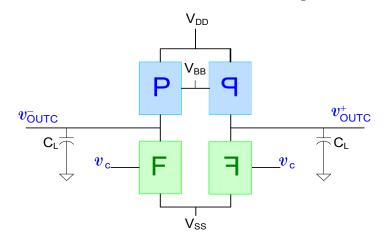
- Fully Differential Single-Stage Amplifier
 - General Differential Analysis
 - 5T Op Amp from simple quarter circuit
 - Biasing with CMFB circuit
 - Common-mode and differential-mode analysis
- Common Mode Gain
 - Overall Transfer Characteristics
- Design of 5T Op Amp
- Slew Rate



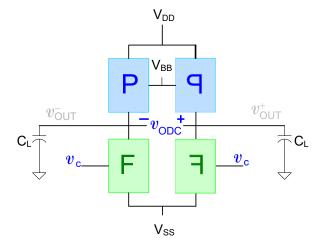
Single-Ended Outputs
Tail-Current Bias



Differential Output Tail Current Bias

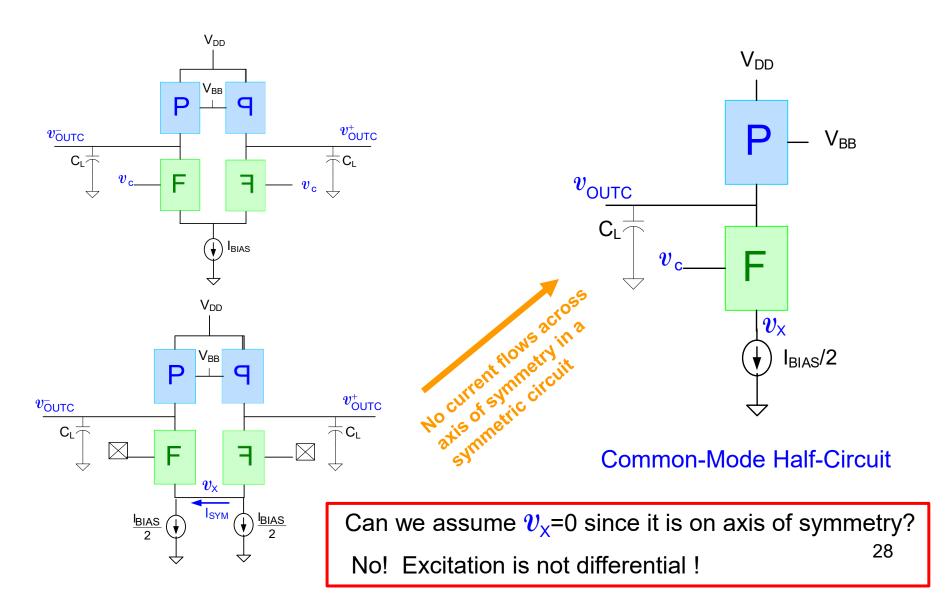


Single-Ended Outputs
Tail-Voltage Bias

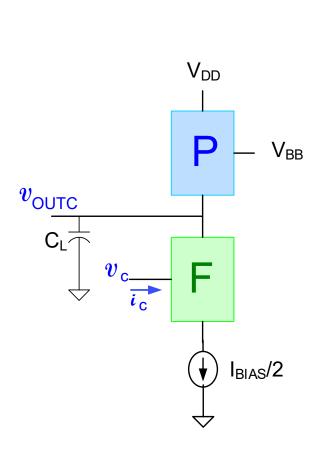


Differential Output Tail Voltage Bias

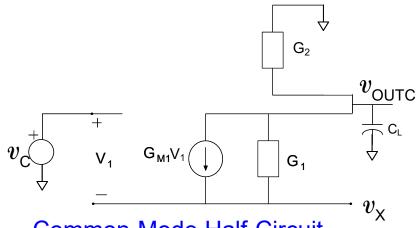
Consider tail-current bias amplifier



Consider tail-current bias amplifier with i_c =0



Common-Mode Half-Circuit (large signal: nonlinear)



Common-Mode Half-Circuit (small signal: linear)

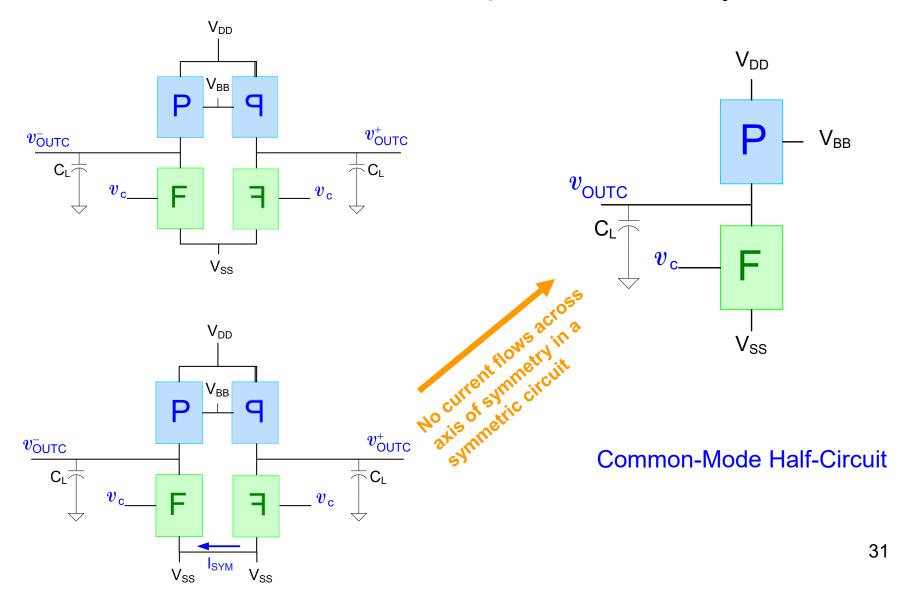
$$\left. \begin{array}{l} v_{\mathrm{OUTC}}(\mathrm{sC+G_1+G_2}) + \mathrm{G_{M1}} v_1 = \mathrm{G_1} v_{\, \mathrm{X}} \\ v_{\, \mathrm{C}} = v_1 + v_{\, \mathrm{X}} \\ v_{\, \mathrm{X}} \mathrm{G_1} - \mathrm{G_{M1}} v_1 = v_{\, \mathrm{OUTC}} \, \mathrm{G_1} \end{array} \right\}$$

Solving, we obtain

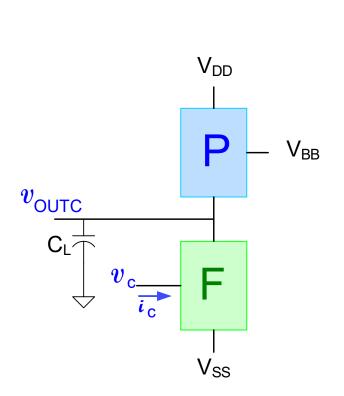
$$v_{
m OUTC}$$
=0 thus A $_{
m C}$ =0

(Note: Have assumed an ideal tail current source in this analysis A_C will be small but may not vanish if tail current source is not ideal. Analysis with nonideal current source is simple)

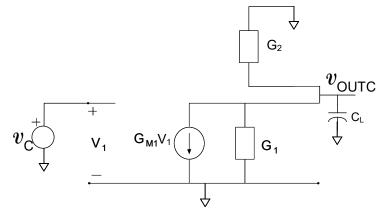
Consider tail-voltage bias amplifier with i_c =0



Consider tail-voltage bias amplifier with i_c =0



Common-Mode Half-Circuit (large signal: nonlinear)



Common-Mode Half-Circuit (small signal: linear)

$$v_{\text{OUTC}}(\text{sC+G}_1\text{+G}_2)\text{+G}_{\text{M1}}v_1 = 0$$

 $v_{\text{C}} = v_1$

Solving, we obtain

$$\frac{v_{\text{OUTC}}}{v_{\text{C}}} = A_{\text{C}} = \frac{-G_{\text{M1}}}{\text{sC+G}_1 + G_2}$$

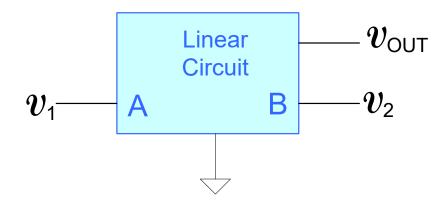
This circuit has a rather large common-mode gain and will not reject common-mode signals

- Not a very good <u>differential</u> amplifier
- But of no concern in applications where $\,v_{\scriptscriptstyle
 m C}$ =0

- Fully Differential Single-Stage Amplifier
 - General Differential Analysis
 - 5T Op Amp from simple quarter circuit
 - Biasing with CMFB circuit
 - Common-mode and differential-mode analysis
 - Common Mode Gain
- Overall Transfer Characteristics
 - Design of 5T Op Amp
 - Slew Rate

Overall Small-Signal Analysis

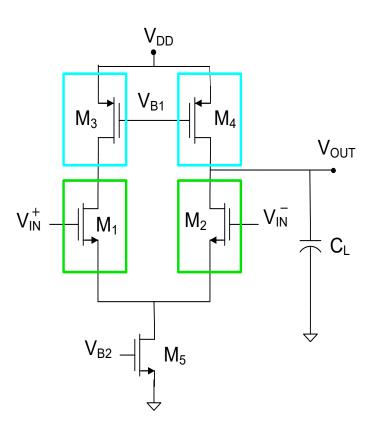
As stated earlier, with common-mode gain and difference-mode gains available



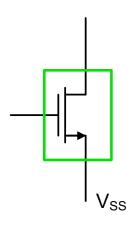
$$v_{\text{OUT}} = v_{\text{c}} A_{\text{c}} + v_{\text{d}} A_{\text{d}}$$

- Fully Differential Single-Stage Amplifier
 - General Differential Analysis
 - 5T Op Amp from simple quarter circuit
 - Biasing with CMFB circuit
 - Common-mode and differential-mode analysis
 - Common Mode Gain
 - Overall Transfer Characteristics
- Design of 5T Op Amp
 - Slew Rate

Design of 5T op amp



Single-stage low-gain differential op amp



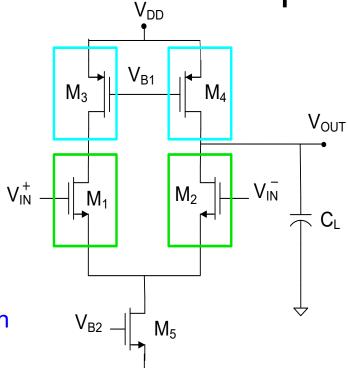
Quarter Circuit

Single-Ended Output: Differential Input Gain

$$A(s) = \frac{-\frac{g_{m1}}{2}}{sC_{L} + g_{o1} + g_{o3}}$$

$$A_{o} = \frac{\frac{g_{m1}}{2}}{g_{o1} + g_{o3}}$$

$$GB = \frac{g_{m1}}{2C_{L}}$$



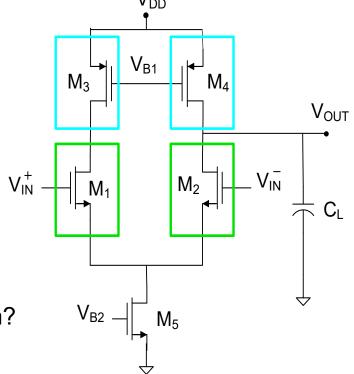
$$A(s) = \frac{-\frac{g_{m1}}{2}}{sC_{L} + g_{O1} + g_{O3}}$$

$$A_{o} = \frac{g_{m1}}{2} \\ g_{o1} + g_{o3}$$

$$GB = \frac{g_{_{m1}}}{2C_{_{L}}}$$

What are the number of degrees of freedom? (assume V_{DD}, C_I fixed, Symmetry)

Natural Parameters (assuming symmetry):



Need a CMFB circuit to establish $V_{\rm B1}$

$$\left\{ \frac{W_1}{L_1}, \frac{W_3}{L_3}, \frac{W_5}{L_5}, V_{B1}, V_{B2} \right\}$$

Constraints: $I_{D5} \simeq 2I_{D3}$

Net Degrees of Freedom: 4

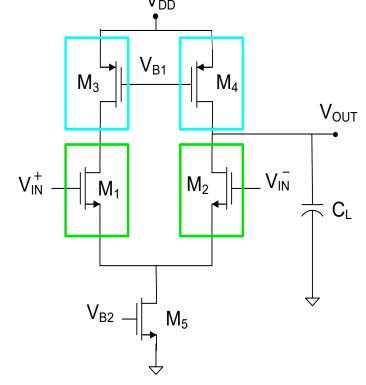
- Expressions for A₀ and GB were obtained from quarter-circuit
- Expressions for A₀ and GB in terms of natural parameters for quarter circuit were messy
- Can show that expressions for A₀ and GB in terms of natural parameters for 5T amplifier are also messy

$$A(s) = \frac{-\frac{g_{m1}}{2}}{sC_{L} + g_{O1} + g_{O3}}$$

$$A_{o} = \frac{g_{m1}}{2} g_{o1} + g_{o3}$$

$$GB = \frac{g_{_{m1}}}{2C_{_{L}}}$$

What are the number of degrees of freedom? (assume V_{DD}, C_I fixed, Symmetry)



Need a CMFB circuit to establish V_{B1}

Natural Parameters:

$$\left\{ \frac{W_1}{L_1}, \frac{W_3}{L_3}, \frac{W_5}{L_5}, V_{\text{B1}}, V_{\text{B2}} \right\}$$

Constraints: $I_{D5} \simeq 2I_{D3}$

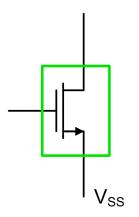
$$I_{D5}{\simeq}2I_{D3}$$

Net Degrees of Freedom: 4

Practical Parameters:

$$\left\{V_{EB1}, V_{EB3}, V_{EB5}, P\right\}$$

Will now express performance characteristics in terms of Practical Parameters 39



Quarter Circuit

Single-Ended Output : Differential Input Gain

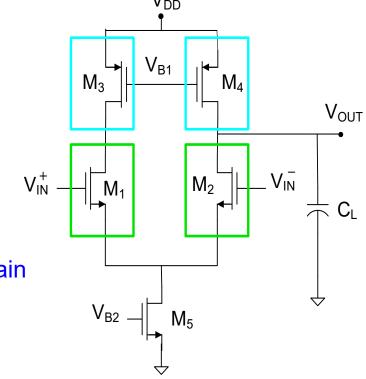
$$A(s) = \frac{-\frac{g_{m1}}{2}}{sC_{L} + g_{o1} + g_{o3}}$$

$$A_{o} = \frac{\frac{g_{m1}}{2}}{g_{o1} + g_{o3}}$$

$$GB = \frac{g_{m1}}{2C_{L}}$$

Practical Parameters:

$$\{V_{EB1}, V_{EB3}, V_{EB5}, P\}$$



$$A_{_{0}} = \left[\frac{1}{\lambda_{_{1}} + \lambda_{_{3}}}\right] \left(\frac{1}{V_{_{EB1}}}\right) \qquad GB = \left(\frac{P}{V_{_{DD}}C_{_{L}}}\right) \bullet \left[\frac{1}{2V_{_{EB1}}}\right]$$

Have 4 degrees of freedom but only two practical variables impact A_0 and GB so still have 2 DOF after meet A_0 and GB requirements

Need a CMFB circuit to establish V_{B1}

Single-Ended Output: Differential Input Gain

Practical Parameters: {V_{EB1}, V_{EB3}, V_{EB5}, P}

$$A_{0} = \left[\frac{1}{\lambda_{1} + \lambda_{3}}\right] \left(\frac{1}{V_{EB1}}\right) \qquad GB = \left(\frac{P}{V_{DD}C_{L}}\right) \bullet \left[\frac{1}{2V_{EB1}}\right]$$

 V_{OUT}

{V_{EB3}, V_{EB5}, P}

{Ver1, Ver3, Vers

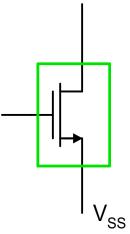
Design Strategy with fixed A_0 and GB requirements:

- 1. Pick V_{FB1} to meet gain requirements
- 2. Pick P to meet GB requirements
- 3. Pick V_{EB3} and V_{EB5} to achieve other desirable properties

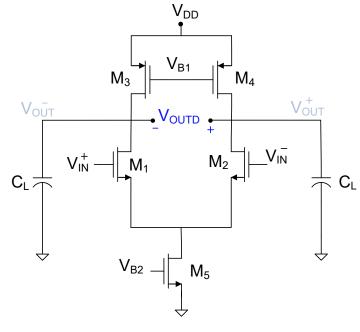
(i.e. explore the remaining part of the design space)

Single-stage low-gain differential I/O op amp

Quarter Circuit



$$\frac{\mathbf{V}_{\mathsf{OD}} = \mathbf{V}_{\mathsf{O}}^{\scriptscriptstyle{+}} - \mathbf{V}_{\mathsf{O}}^{\scriptscriptstyle{-}}}{}$$



Differential Output : Differential Input Gain

$$A(s) = \frac{g_{m1}}{sC_{L} + g_{O1} + g_{O3}}$$

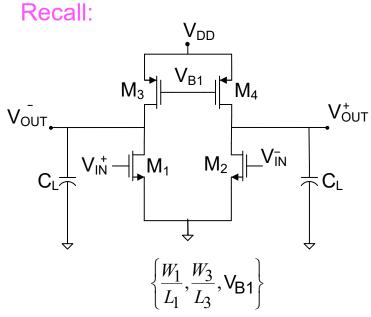
$$\mathsf{A}_{\scriptscriptstyle{\mathsf{o}}} = \frac{\mathsf{g}_{\scriptscriptstyle{\mathsf{m}1}}}{\mathsf{g}_{\scriptscriptstyle{\mathsf{o}1}} + \mathsf{g}_{\scriptscriptstyle{\mathsf{o}3}}}$$

$$\mathsf{GB} = \frac{\mathsf{g}_{\scriptscriptstyle \mathsf{m}}}{\mathsf{C}_{\scriptscriptstyle \mathsf{L}}}$$

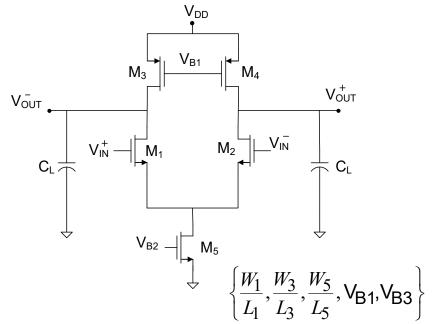
$$A_{_{0}} = \left[\frac{1}{\lambda_{_{1}} + \lambda_{_{3}}}\right] \left(\frac{2}{V_{_{EB1}}}\right) \quad GB = \left(\frac{P}{V_{_{DD}}C_{_{L}}}\right) \bullet \left[\frac{1}{V_{_{EB1}}}\right]$$

Have 4 degrees of freedom but only two practical variables impact A_0 and GB so still have 2 DOF after meet A_0 and GB requirements that can be used for other purposes

A_D expressions valid for both tail-current and tail-voltage op amp



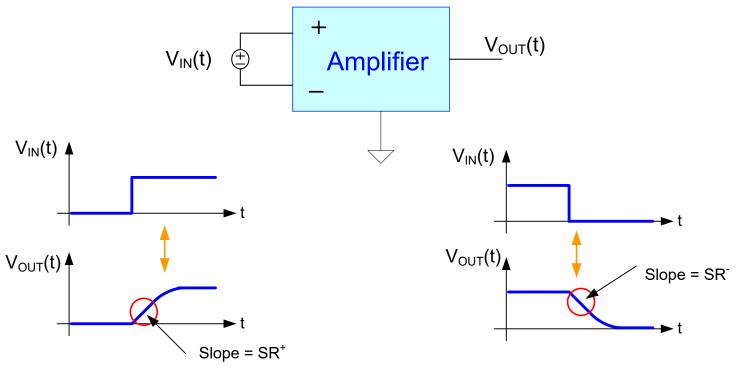
- Common-mode input range large for tail current bias
- Improved rejection of common-mode signals for tail current bias
- Two extra design degree of freedom for tail current bias
- Improved output signal swing for tail voltage bias (will show later)



- Fully Differential Single-Stage Amplifier
 - General Differential Analysis
 - 5T Op Amp from simple quarter circuit
 - Biasing with CMFB circuit
 - Common-mode and differential-mode analysis
 - Common Mode Gain
 - Overall Transfer Characteristics
- Design of 5T Op Amp
- Slew Rate

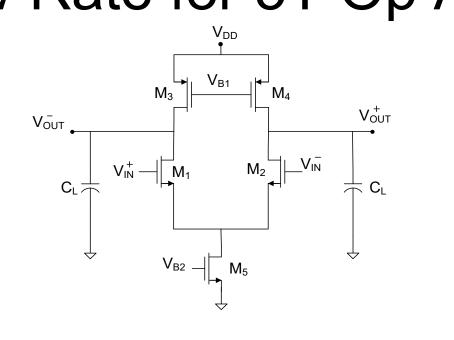
Slew Rate

Definition: The slew rate of an amplifier is the maximum rate of change that can occur at the output node



- SR is a nonlinear large-signal characteristic
- Input is over-driven (some devices in amplifier usually leave normal operating region)
- Hard input overdrive depicted in this figure
- Magnitude of SR⁺ and SR⁻ usually same and called SR (else SR⁺ and SR⁻ must be given)

Slew Rate for 5T Op Amp



With large step input on V_{IN}^+ , all tail current (I_T) will go to M_1 thus turning off M_2 thus current through M_4 which is $\frac{1}{2}$ of I_T will go to load capacitor C_1

The I-V characteristics of any capacitor is

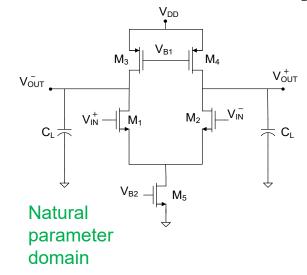
$$I=C\frac{dt}{dV}$$

Substituting $I=I_T/2$, $V=V_{OUT}^+$ and $C=C_L$ obtain a voltage ramp at the output thus

$$SR^{+} = \frac{dV_{OUT}^{+}}{dt} = \frac{I_{T}}{2C_{L}} \quad \begin{array}{l} \text{Natural} \\ \text{parameter} \\ \text{domain} \end{array} \qquad SR^{+} = \frac{P}{V_{DD}2C_{L}} \quad \begin{array}{l} \text{Practical} \\ \text{parameter} \\ \text{domain} \end{array} \quad 47$$

$$SR^{+} = \begin{array}{c} P \\ V_{DD}2C_{L} \end{array}$$
Practical parameter domain

Slew Rate for 5T Op Amp



$$SR^+ = \boxed{\frac{I_T}{2C_L}}$$

$$SR^{+} = \begin{array}{c} \\ \hline V_{DD}2C_{L} \end{array}$$

Practical parameter domain

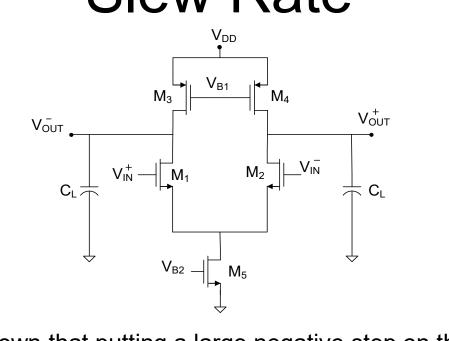
Can SR⁺ be expressed as product of model parameters and architecture dependent term?

 $SR^{+} = \left[\frac{1}{2C_{I}}\right][I_{T}] \qquad SR^{+} = \left[\frac{1}{V_{DD} 2C_{I}}\right][P]$

Can SR+ be expressed in small-signal parameter domain? Question:

$$SR^{+} = \frac{g_{o1}I_{T}}{\lambda 2C_{I}} = \left| \frac{I_{T}}{\lambda 2C_{I}} \right| [g_{o1}]$$

Slew Rate



It can be similarly shown that putting a large negative step on the input steer all current to M₂ thus the current to the capacitor C₁ will be I_T minus the current from M₂ which is still $I_T/2$. This will cause a negative ramp voltage on V_{OUT}^+ of value

$$SR^{-} = \frac{dV_{OUT}^{+}}{dt} = -\frac{I_{T}}{2C_{L}} = -\frac{P}{V_{DD}2C_{L}}$$

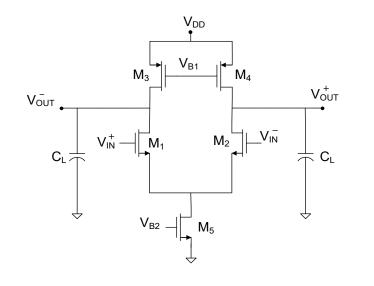
Since the magnitude of SR⁺ and SR⁻ are the same, obtain a single SR for the amplifier of value $SR = \frac{P}{\sqrt{2} - 2C}$

Interdependence of Parameters

$$A_{0} = \left[\frac{1}{\lambda_{1} + \lambda_{3}}\right] \left(\frac{1}{V_{EB1}}\right)$$

$$GB = \left(\frac{1}{2V_{DD}C_{L}}\right) \bullet \left[\frac{P}{V_{EB1}}\right]$$

$$SR = \frac{P}{V_{DD} 2C_L}$$



Note: With this structure, the three key performance characteristics {A₀, GB, SR} can not be independently specified

e.g. If
$$V_{EB1}$$
 is picked to set A_0 , then $\frac{P}{V_{DD}C_L}$ will determine both GB and SR

Alternately, observe
$$SR = \frac{GB}{A_0(\lambda_1 + \lambda_2)}$$

Stay Safe and Stay Healthy!

End of Lecture 4